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ABSTRACT
We prove here that a certain 14 connected finite complex cannot admit the
structure of an H-space. The a and ¢ invariants of Zabrodsky are used here. It
was conjectured by Adams and Wilkerson that the complex described ad-
mitted an H-structure.

§0. Introduction
In this note we prove
THEOREM. There is no mod 2 H-space X with
H¥(X; Z,) = Zy[x,5)/ x15s @ A(x33, X237, X2)-
This theorem is related to the following theorems:

THEOREM A (Thomas, 1962) [7). If X is a finite H-space with primitively
generated mod 2 cohomology, then the first nonvanishing mod 2 cohomology
group in degree greater than zero occurs in degree 1, 3, 7, or 15. Furthermore, if
H*(X; Z) is two-torsion free then the first nonvanishing group occurs in degrees
1,3,0r7.

TueoreM B (Lin, 1987) [4]. If X is a finite H-space with H(X;Z,)
associative, then the conclusion of Theorem A holds. Furthermore, if the first
nonvanishing mod 2 cohomology occurs in degree 15, then there is an x,s€
H(X; Z,) with x} # 0.
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Thus, the theorem of this note eliminates the most elementary case of a
finite H-space whose first nonvanishing mod 2 cohomology group occurs in
degree fifteen. The authors actually make the following conjecture:

CONJECTURE. Any fourteen-connected finite H-space is acyclic.

A proof of the theorem of this note using K-theoretic techniques has been
announced by Ulrich Suter (unpublished). The techniques used in this note are
strictly homological. We hope that this note will shed some light on the
following problem.

PROBLEM. Let X be a simply connected H-space with H,(2X; Z,) finitely
generated as an algebra. Classify the algebras that can arise in this way.

In the case of the space X of our theorem above, it is easy to show that
H .(QX 3 Zy) = A(114) @ Zs[ s, g, Usg, Uss].

The proof of our theorem consists of showing that there is no H-space X with
H(QX; Z,) having the above form.

Our argument uses much the same methods as our paper on 6-connected
finite H-spaces, [6], although the calculations here are different. We wish this
paper and [6] to be supplementary, in that this paper will describe the
constructions and emphasize the structure of the argument, while [6] contains
the full details of calculations.

The basic invariants used in our calculations were described by Zabrodsky
in [8]. In particular, we refer the reader to [8] for the definitions of H-
deviation, a-obstruction, and c-obstruction.

We wish to thank T. B. Ng for the factorization of Sg*2 that we use in
§1 below.

§1. First steps

We first note that an H-space with the cohomology given above must have
the Steenrod connections:

(1.1)  Sgxy5=x2; Sq*%3 =255 Sq%xn=Xy; and Sqg'x=xk.
Furthermore it follows from [1] that as a co-algebra
(1.2) H*QX; Zy) = A1) @ T(142, s, g, Usy),

where u,,, ..., 4, are suspensions of the corresponding classes in H*(X),
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while usg is the transpotence element associated with the relation x{s = 0. For
the rest of the paper, we set
r=1u, S=1Uy and = uy.
We see that the 4(2)-sub-algebra generated by u,, is the algebra
B =Z,[r}/(r')® A(s, t).

We shall construct a stable 3-stage Postnikov system

such that:
(1) 4o=K(Z, 58);
(2) there exists an element vEPH'"'(A5;Z;) such that c(v)=

(21P2)*(15)) D (P ) *(153);

(3) the fiber of p, is K(Zy; 112, 116) X K(Z,; odd) where K(Z,; odd) is a
product of Eilenberg-MacLane spaces in odd degrees;

(4) the restriction of v to the fiber of p, is

Sq*Sq'n . + Sq'1,6+ quszai‘odd,

where 1,44 is a fundamental class of K(Z,; odd) and deg(e;) > 0.
We note that if it were possible to construct a ¢c-map

L:QX— A,
such that
SE(P1p)*(158) = tss,
we would obtain an immediate contradiction to the existence of X, since
uss @ usg = f3( py P2)*(155) @ f3(p1 P)* (155)
=c(f2(v)
=0,

since f¥ (V)€ H*¥(QX) = 0.

But we do not know how to construct such an £;. We are, however, able to
contradict the existence of X by constructing maps f;, f;, and f; that satisfy the
hypotheses of the following theorem.
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THEOREM 1.1. IfXisan H-space, then there is no commutative diagram of
H-spaces and H-maps of the type

(1.3) A,

QX > Ay

such that
(1) f&Gse) = usg,
(ii) c(f) factors as

QX A QX - Q2K, 2. Q4
such that
Im(c¥)CB®B.
(Here Qj,: QK,— A, is the fiber of p,.)
ProOOF. By the formula for the c-obstruction of a composition [8], we have
c(fF) = ([ FNc ) + c(L)*(o*®)
= uss @ usg + c( L)*(a*(v)).

Since f¥(v)€ H*(QX) =0, it remains to compute c( f;)*(c*(v)). We have a
commutative diagram

o QAZ

§ o

1

QX X QX

c(f)

Condition (ii) implies that there is a map a: QX — B,, B, a generalized
Eilenberg-MacLane space, such that Im(a*) = B and that there is a commuta-
tive diagram

o) Q4,
| o

QX X QX B, X B, QA

aXa
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Applying the Cartan formula for secondary operations [3, Theorem 3.1],
we obtain
c{ f)*(o*(v)) EB @ H*(QX) + H*(QX)® B

+ Im(Sq*Sq') + Im(Sq")
+ Im(Sq*Za)),

where the «; are elements of positive degree in &/(2). In degrees
=43, H¥(QX)= B, s0

Im(Sq®Za;) C BQ H*(QX) + H*(QX)® B,
and hence w3 € B, a contradiction since usg is indecomposable. O

The remainder of the paper will be devoted to constructing the diagram
(1.3). We begin with the definition of the 4,’s.
In o/(2), we have the congruence

Sq%° = Sq*Sq** mod &2,

where & is the left ideal generated by Sg**, k =0, 1, 2, 3. There is a factoriza-
tion of Sg°2 on the intersection of the kernels of S¢*, 0 <k < 4:

Sq* = 8q'z + Za;B;
such that
(1) deg B;is even,
(2) z=(5¢% + Sq*Sq*)poo + (S¢* + Sq*Sq” + Sq**Sq*)¢1,,
+(Sg78q* + $¢*°Sq* + 54'°54°)¢,, + S, 4
+ (89" + 5¢"*Sq* + Sq'2Sq*)ps 5 + Sa'*Sa*$y 5
+ Sql4¢1,4 + @445
where ¢ is the secondary operation based on a factorization of Sq*Sq?.
We now define A, to be the fiber of

4
8o: Ao =K(Zy, 58)~ Ko= [I K(Z,, 58 +2%)
k=0

given by
8¥(sg+2)=S5¢"15, 0=k=4.

In A4,, we may apply our factorization of Sg*2 to the image of 153. Let z, {b;} be
cohomology classes in H*(4,) that represent the operations Z and {8},
respectively. We define A4, to be the fiber of the map
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811 Ay~ K(Zo, 113) X K(Zo, 117) X [ K(Zs, 58 + deg B,)

given by
gt (s) = Sqg*z,

g (h17) = Sq*Sq’z,
and
gt ('5s+deg(p,)) =b.
All of the relations used thus far hold stably, so we choose all our spaces and

maps to be at least 4-fold loop spaces and maps. If B* denotes the k-fold
unlooping functor, we have in H*(B?4,) that

[(B*( P, p)*(150))* = Sa*((B*p: P,)* (1))
= Sg**Sq¢* (B p)*(is0))
= Sq®[Sq'(B*pfz) + Zo; B2 p¥ (b))
= (8¢*Sq'Sq™ + Sq'Sq**Sq*)(B* p}'z)
(by the Adem relation Sg*Sg® = S¢*Sq' + Sq*'Sq?)
=0.
It follows that there is a suspension element v€ H''"(4,) such that
¢(®) = (P P)*(1s9) ® (1 2)*(153)
and
J*) = Sg*Sq" 112 + Sq'1116 + S§PZatsy 4 eg g,

§2. Construction of liftings

We now turn to the definition of the maps £, f;, and f; of diagram (1.3). Their
construction is somewhat involved; in fact, we need a factorization:
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by

4
{

X 4

@.1) : / v
A
{
4

Qx 2 6, 2. g, A g =
\,\1 | | "
Gy — Hy, -2~ E,
N
F,

In (2.1) the composition p, p, = p,. Here p, is the fiber of the map g given by
the same formula as g, without the Sg'i;; term, and p, is the fiber of the map
8o : 4, — K(Z,, 59) given by g¢(1s0) = Sq PP (ise)-

We shall see that (agBoyo fo)*(1ss) = Us;, SO this composition will serve as our
choice of f,. We will choose f, =6, f{ The vertical maps will be principal
fibrations whose fibers are generalized Eilenberg-MacLane spaces.

The next theorem specifies the additional properties required in this
diagram to produce the hypotheses of Theorem 1.1.

THEOREM 2.1. The diagram (2.1), with the exception of the map f,, can be
constructed so that

(a) G, is a double loop space, H, and E, are quadruple loop spaces;

(b) a is a c-map and a-map, B, a quadruple loop map, y, and f, loop maps
and c-maps;

(c) E, is adouble loop space, H, is the loop space of a c-space, and G, is a loop
space and c-space; the vertical maps respect these structures;

(d) &, is an H-map, B, is a loop map, y, is a loop map, and f”, is a loop map
and c-map;

(e) 8, is an H-map.
Also

(f) H*(E,) contains no element whose coproduct is

Sqles ® Sqles, e # 0EH(E)):

() the fiber of F, has its fundamental classes in degrees <72.
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Theorem 2.1 will be proved in Section 3. We now derive the hypotheses of
Theorem 1.1 from Theorem 2.1.

THEOREM 2.2. The obstructions c( f;) and a( f}) factor through classes in
BQ®B and B® B ® B, respectively.

PrROOF. We compute:

c(f)=c(6: /)
=c(8, f) + elements in HQX AQX) (i)
= c(@ B f) (ii)
= c@ By (finf) (iii)

= c@B)n firn f)) + QaBre@ ) fir f).

Here (i) holds since 6, is a lifting of 8, = &, B,7,, (ii) is true since H¥4(QX) =0,
and (iii) holds since f; is a c-map, by Theorem 2.1(d).

By [6, Proposition AS] and the fact that BH, is a c-space by Theorem 2.1(c),
(1 + T*)c(a, B)) = (Q%gy)[n], for some n € H*(H, A Hy). Since H**(QX) A QX)
C B®B, Q%g, consists of Steenrod operations, and B ® B is closed under
these operations, we obtain

c(é, BY(n f’, AT f”,)EB ® B + diagonal terms.
These terms must lie in
H29®H29 + H30®H30 + H32®H32 + H36®H36,

which is contained in B ® B, by (1.2).

Application of [5] gives c(y,) €E PH*(G,)® PH*(G,). Further, c(y,) factors
through the fiber of 7, so it lies in degrees = 70, by Theorem 2.1(g). Hence
Qa,B)c(» ) fia f) consists of Steenrod operations applied to elements
in @, (PH(QX)® PH/(QX)), i,j < 56. So

Qe B)c X fir HYEB®B.

A similar calculation, using Theorem 2.1(f), yields a( f,)EB ® B ® B. (See
Theorems 5.1-5.5 of [6] for more detailed versions of these arguments.) 0O

THEOREM 2.3. a(g fiy==* andc(g, f))=+*.

PrOOF. We have
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a(g f)=Qga(f) and (g f)=Qgc(f).
And

Qg,: Q4,~ K(Z,, 112, 116) X K(Z,, 0dd),

and since a( f;) and c( f;) factor through Q?K, we see that a(g; f;) and ¢(g, f})
are the images under Steenrod operations of elements of degrees 58, 60, 64,
and 72 in B® B ® B and B ® B, respectively. One calculates, using formula
(1.2), that all these images are zero. O

Since g, f; is an H-map, it is represented by primitives in H*(Q.X), and the
degrees of these are > 58, g, f = *, so a lifting f, exists.

THEOREM 2.4. f, can be chosen to be an H-map.

Proor. We use the method of [8]. D, factors through the fiber of p, which
is K(Z,, 112, 116) X K(Z,, odd). Hence it factors through a cohomology class
D, in degrees 112 and 116. By Theorem 2.3 and [8],

A®1-1®M)ID;] =[ay(g f)]=0, and (1—T*)[Dy]=[c(g f)]=0.

Hence D, determines a class in P Ext}’qx(Z,, Z,), n = 112, and 116. But by
(1.2), these groups are zero. Therefore we may alter £, so that it is an H-map. O

Thus the hypotheses of Theorem 1.1 follow from Theorem 2.1.

§3. Proof of Theorem 2.1

Step 1. Construction of

Qx -2, G, -~ H, -2 E, -2 4,

NI

F,
Begin by defining B%q_,: B*Fy—K(Z, 18) to be the fiber of the map
B*w_,: K(Z, 18)— K(Z,; 20, 22) such that
@3.1) (B*w_)*=8q’1,; and (B*w_,)*,, = Sq,s.

Now let B*E, and B*H, be the fibers of maps B*w_, : B*F,— K(Z,, 63) and
B*h_,: B*F,— K(Z,, 49) defined by, respectively,



Vol. 66, 1989 14-CONNECTED FINITE H-SPACES 283

(B*w_)*(1s3) = S¢%°Sq"’ys
. - S2“SePS4"s

and
(3.3) (B*h_1)*(1sg) = SqPSqPy,q,
where y,; = B*w*(1,5). We have induced a diagram

B,

B*H, B'E,
(3.4) B, B,
B*F, B‘F,

Next, define B2s,: B’G,— BF, to be the fiber of the map B%*_,: B*F,—
K(Z,, 40) given by

(3.5) (B%k_1)*(120) = 54'°Sa®y1s + y165a°16,
where y;c = 0*(a*y,5). In H¥*(B*G,), we have the identity
(Bso)*(B*h_1)*(147) = (B’s0)*(Sq"Sq'°Sq%y1s)

(3.6) = 8q"(B50)*(Sq'°Sq%y16)
= 897(11654%y10)-
Looping once, we get
BG, = BH,
By, Br,
L -
3.7 BF, ———— BF,
Bk_, Bh_,
s d
K(Z,, 39) K(Z,, 46)

that is commutative and such that Dj, factors through the map
Dg,,: BGy A BGy— K(Z,, 45)
given by
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(3.8) ‘D~Bm(l45) = (Bso)*y:5 @ [(Bso)*y1s) 2

by application of a theorem of [9] to (3.6). Consequently, y, : G,— H, is a loop
map such that c(y;) = 0.

We next turn to the map ff, Let P, X denote the projective plane of X. Since
X5 is primitive, it has a representative P, x,; € H'(P,X). One checks that

Squqs(szlS) = (quples)(szls)-
Also,
qu(szls) = 0= Sg¢*(P,xy5).

It then follows from (3.1) and (3.5) that the map P, X — K(Z, 16) representing
the class P,x,; lifts to a map

P,Bfy: P,X = B*G,,
whence arrives an H-map
Bf6 . X - BGo.

Thus f;: QX — G, is a loop map and c¢( f;) = 0.
To complete the bottom row of diagram (2.1) we need the map «,. By (3.2),

(Bw_)*(10) = Sg*°Sq"%y;s
=yis.

Hence E,~ Fy, X K(Z,, 58), and, by the results of [2], this equivalence is as
a-spaces. Thus we define the g-map « : E,— Ay = K(Z,, 58) to be projection
on the second factor. To see that « is also a c-map, let B%, : B‘E,—~ K(Z, 18)
be the fiber of the map B*w_,: K(Z, 18)— K(Z,, 63) given by the same
formula as B*w_,. As above,

(3.9) Ey~K(Z, 14) X K(Z,, 58).
Then a, factors through the projection &,: Eq— K(Z,, 58). Since c(ag€
HY(E, A E,) and the induced map E, A Ey— E, A E, is zero on cohomology in

degree 57, c(ap) = 0.

Step 2. Construction of
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f; B, = &, -

N

QX s Gl H] El Al
N N
% By ag
GO HO EO 7 AO

We now proceed to the second row of diagram (2.1). By (3.3),
(Bw_1)*(146) = Sq*(Sq*y15)
= (S¢%15)%,
$0 Hy~ Fy X K(Z,, 44), and A(1 @ 1,,) = S¢%1. @ S¢®y ...
In the next proposition, we collect some information about the images

under /(2) of 1Q1,E H*(E,) = H*(Fy X K(Z,, 58)) and 1®1,,€ H*(H,) =
H*(Fy X K(Z,, 44)).

ProposiTiON 3.1. (1) There exist elements By € H¥(B*E,) such that
(0% (B™) = 1®S5q%155, 1 =k = 4.

(2) There are elements B’a,, B’ay€ H*(B°H;)) and B%«a,EH*(B*H)
that suspend to 1Q Sq*Sq*1,,, 1@ Sq8Sq**,,, and 1 ® Sq*Sq**1,,, respectively.
Furthermore, A(B*«,) = Ky} ®yik, KEZ,.

(3) There are elements Ba\4,,, B’ 1413, B2y, and Ba ;in H*(B*H ) that
suspend to 1@ 85q¢'88¢"%1, + yiu(Sq%y)2® 1, 105¢"Sq"%1,,, 1®S9'25q",,,
and 1 @ Sq"1,, respectively .

(4) (B)*(Buv,) = Sq""(Bay3) + Sq'°Sq lB'Ollz,u + S(IA(Bau,lz) + Sq? (Bayg2)-

These facts arise through ‘appropriate use of the spectral sequence
(3.10) Toryyy(Z,, Z,)= H*(QY),
cf. Propositions 3.1-3.3 of [6], and the Adem relation
Sq'%Sq" = Sq'Sq" + Sq'°Sq'Sq'2Sq' + Sq*Sq'*Sq'* + Sq*Sq'*Sq'2.

We choose this particular factorization to ensure part (g) of Theorem 2.1.
Details of the proof are left to the reader.

We can now define H,, E,, and A4,. Let
M,y =K(Zy; 60, 62, 66, 74),
and define B*w, : B*E,— B’M, and B*g,: B‘A,— B*M, by
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(B*Wo)* (160 2¢) = B, 1=k =4,
(B*80)*(152+2*) = Sq4%153, l=k=4.

Let B%q, : B*E, —~ B*E; and B*p, : B*4,— B*A, be the fibers of B>w, and B'g,,
respectively.

Let B’Ly=K(Z,;, 59, 59, 62, 64, 68, 72, 74) and define B*h,: B*H,— B*L,
by the table

x (B?ho)*(x)

Isg Ba 12,1

Isg Bay;
(3.11) Iy Ba,

Ies Ba,

Igg Blay

In B 20114,12

114 B 20116,12

Let B%7, : B2 H,— B*H, be the fiber of B%h,.

To define G,, we shall need to deal with Sqg’. In H®(BE,) there is an element
By, that suspends to 1 ® Sq'is; in H*(Ey) = H*(F, X K(Z,, 58)). It is not hard
to check that

A(Buvy) = [(Bgo)*(715))* ® [(Bao)*(»15)}*.
By (2.8), A((By,)*(BBo)*[Bvo]) = 0. We define
Bky: BGy— BLy X K(Z,, 60)
by
Bky=BhyBy, on BL,,
and
(Bko)*{160] = (Byo)*(Bo)*[Buol.
Let Bs, : BG, — BG, be the fiber of Bk,. Since the image of (Bf;)*(Bk,)* consists
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of primitive elements of H*(X) in degrees greater than 30, it must be zero.
Hence Bf, lifts to Bf, : X — BG,. Since B, is an H-map, Dy; factors through the
fiber of Bs,. Checking degrees, at least one factor of each term of Dj; is
decomposable in H*(X). Since

() = (e*®c*XDx),

o f{) = (). We now have:

4,
(.12) G, — 2 B —b B 4 % . K@, 59)
AT A
St
QX —* G, —— H,—*— B, 2 4,

By construction, 4, is a fourth loop space, E, a double loop space, H, is the
loop space of a c-space, G, is the loop space of an H-space, and the vertical
maps preserve these structures. The maps B; and y, are loop maps, and it is
possible to choose &, to be an H-map using an argument similar to that of
Theorem 2.4. Finally, application of the spectral sequence (3.10) to the space
E, yields part (f) of Theorem 2.1.

It is immediate from the construction that there exists a lifting 8, : G, —~ 4,.
It remains to show that 6, is an H-map. To do this, we begin by obtaining a
factorization of the map Bk,. Let B, : B*G,— K(Z, 16) be constructed so that,
if Bg,, = B*§¥(1,¢), we have

(i) Sq'°Sq*(Bgs) = (B*21)Sq*(B*g14) # 0,
(i) Sq ‘5Sq:’(Bg14®quBg“) = (Bg11)*®(Bg1s)* # 0, and

(iii) PH?(G,) C S¥(H*(K(Z, 14))).

We may also define B‘F,: B*‘H,—K(Z, 18) to be the fiber of the map
B*h_,: K(Z, 18)— K(Z,, 49) given by the formula

B*h* 1(144) = Sq*Sq*1.

There results the commutative diagram

BG, P BH, %, BE,
(3.13) l 1 1
BG, o BH, & BE,
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By (3.9), there exists Bt € H®(BE,) such that o*B7, = 1 ® Sq'is;. We could
have chosen Bu,€ H*(BE,) to be the image of B}, and we assume this choice
was made.

Application of the Adem relations to conditions (i) and (ii) gives that
(BB, Bj,)*(B?,) is primitive in H*(BG,). Now let BG, be the fiber of
(BBy Biy)*(B1p) : BGo— K(Z,, 60). Then BG, is an H-space and there is a
commutative diagram

G, G, : » Fy
(3.18) l.s, 150 l,,_l
e l G, a K(Z, 14)

The H-deviation D, factors through a map D, : G, A G,—~K(Z,, 58). By
(3.12), D, can be defined using a nullhomotopy of the composition
Sq' o ago By ¥o0 5, But by (3.9), (3.13), and (3.14), this nullhomotopy could be
chosen to be 4, composed with a null-homotopy of Sg* o &g ° By © 9 © §,. Thus the
class of D, E H*(G, A G)) is in (6, A 3,)*H*(G, A G,). By use of the methods of
[8] 6, can be arranged so that

D, E(5¢ Q3¥)(PH?(G)) ® PH¥(GY)),

so by condition (iii), D, = 0.
Thus Theorem 2.1 is proved.
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