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ABSTRACT 
We prove here that a certain 14 connected finite complex cannot admit the 
structure of an H-space. The a and c invariants of Zabrodsky are used here. It 
was conjectured by Adams and Wilkerson that the complex described ad- 
mitted an H-structure. 

~0. Introduction 

In this note  we prove  

TheOREm. There is no m o d  2 H-space X with 

H*(X;  Z 2 )  -~- Z2[xls]/X145 ~ A(X23, X27, X29). 

This  theorem is related to the following theorems: 

ThEOReM A (Thomas,  1962) [7]. I f  X is a finite H-space with primitively 
generated rood 2 cohomology, then the first nonvanishing m o d  2 cohomology 
group in degree greater than zero occurs in degree I, 3, 7, or 15. Furthermore, i f  
H*(X;  Z) is two-torsion free then the first nonvanishing group occurs in degrees 
1, 3, or7. 

TmZOREM B (Lin, 1987) [4]. I f  X is a finite H-space with H . ( X ;  Z2) 

associative, then the conclusion of  Theorem A holds. Furthermore, i f  the first 
nonvanishing rood 2 cohomology occurs in degree 15, then there is an XlsE 
HIS(X; Z2) with x2t5 ~ O. 
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Thus, the theorem of this note eliminates the most elementary case of a 
finite H-space whose first nonvanishing rood 2 cohomology group occurs in 
degree fifteen. The authors actually make the following conjecture: 

CONJECTURE. Any fourteen-connected finite H-space is acyclic. 

A proof of the theorem of this note using E-theoretic techniques has been 
announced by Ulrich Surer (unpublished). The techniques used in this note are 
strictly homological. We hope that this note will shed some light on the 
following problem. 

PXOeL~M. Let X be a simply connected H-space with H . (~X;  Z2) finitely 
generated as an algebra. Classify the algebras that can arise in this way. 

In the case of the space X of our theorem above, it is easy to show that 

H.(D.X; Z2) ffi A ( u I 4 ) ( ~ Z 2 [ u 2 2 ,  U26, U28, U58 ]. 

The proof of our theorem consists of showing that there is no H-space X with 
H.(D,X; Z2) having the above form. 

Our argument uses much the same methods as our paper on 6-connected 
finite H-spaces, [6], although the calculations here are different. We wish this 
paper and [6] to be supplementary, in that this paper will describe the 
constructions and emphasize the structure of the argument, while [6] contains 
the full details of calculations. 

The basic invariants used in our calculations were described by Zabrodsky 
in [8]. In particular, we refer the reader to [8] for the definitions of H- 
deviation, a-obstruction, and c-obstruction. 

We wish to thank T. B. Ng for the factorization of Sq 32 that we use in 
§I below. 

§1. First steps 

We first note that an H-space with the cohomology given above must have 
the Steenrod connections: 

(I.1) SqSxlsffix23; Sq4X23-~X27 ", Sq2x2?---X29 ", and Sq~x29ffix25. 

Furthermore it follows from [ 1] that as a co-algebra 

(1.2) H*(D.X; Z2)--~ A(uiJ @ I"(u22, u26, U2s, Uss), 

where u14,..., u2s are suspensions of the corresponding classes in H*(X), 
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while uss is the transpotence element associated with the relation x~45 = 0. For 
the rest of the paper, we set 

r=ut4 ,  s--u22, and t=u26. 

We see that the A(2)-sub-algebra generated by u~4 is the algebra 

B = Z2[r]/(r 4) ®A(s ,  t). 

We shall construct a stable 3-stage Postnikov system 

A2 O,,A1 P' 'Ao 

such that 

f2 " ~ X ' - *  A2 

f ~ ( P l  P2)*(158) = USS, 

we would obtain an immediate contradiction to the existence of X, since 

uss ® uss = f ~ ( P l  P2)*(158) ®f~(Pl P2)*(15s) 

= c ( A * ( v ) )  

O, 

since f 2*( v) ~ Hodd( D2f) ---- O. 
But we do not know how to construct such an f2. We are, however, able to 

contradict the existence of Xby constructing maps f0, fb and f2 that satisfy the 
hypotheses of the following theorem. 

such that: 
(I) A0 = K(Z2, 58); 
(2) there exists an element v~PHn7(A2; Z2) such that c(v) -- 

(p~p2)*(zss)®(PtP2)*(15s); 
(3) the fiber of P2 is K(Z2; 112, 116)X K(Z2; odd) where K(Z2; odd) is a 

product of Eilenberg-MacLane spaces in odd degrees; 
(4) the restriction of v to the fiber of p2 is 

Sq4Sq~z,2 + Sqlz.6 + Sq28y-.a~o~, 

where todd is a fundamental class of K(Z2; odd) and deg(a~) > 0. 
We note that if it were possible to construct a c-map 
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THEOREM 1.1. I f  X is an H-space, then there is no commutative diagram of  
H-spaces and H-maps of  the type 

(1.3) 

f~X 

A2 

A1 

, . 4  0 

such that 

(i) f*058) = uss, 
(ii) c( fi) factors as 

~'~X A ~'~X Cl i ~r~2Ko ~Jo) ~ l  

such that 

Im(c*) c B ®B.  

(Here Djo " DJlo ~ Al is the fiber of  pl.) 

PROOF. By the formula for the c-obstruction of a composition [8], we have 

c( f*(v)) = ( f *  ® f*)(c(v)) + c(A)*(a*(v)) 

= u~s® uss + c(A)*(a*(v)). 

Since f*(v)~H°~a(flX)= 0, it remains to compute c(f2)*(a*(v)). We have a 
commutative diagram 

tiP2 

~ X  X ~ X  ' D, A I 
c(A) 

Condition (ii) implies that there is a map a : f ~ X ~ B I ,  Bl a generalized 

Eilenberg-MacLane space, such that Im(a*) = B and that there is a commuta- 
tive diagram 

c~2~ ~ D.A2 

' BI X BI ~ [ 'L41  
m 

f iX × i )X 
a X a  
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Applying the Cartan formula for secondary operations [3, Theorem 3.1], 
we obtain 

c2(f2)*(a*(v)) E B ~ H*(f~X) + n*(I~X) ® B 

q- Im(Sq4Sq 1) "F Im(Sq 1) 

+ Im(Sq28,y, ai), 

where the at are elements of positive degree in 0d(2). 
=< 43, H*(~X) = B, so 

Im(Sq2SZai) C B ® H*(t2X) + H*(~X)(~ B, 

In degrees 

and hence u~8 E B, a contradiction since Uss is indecomposable. [] 

The remainder of the paper will be devoted to constructing the diagram 
(1.3). We begin with the definition of the A{s. 

In ~¢(2), we have the congruence 

S q  60 = Sq2SSq 32 mod ~ ,  

where .~ is the left ideal generated by Sq 2~, k = 0, 1, 2, 3. There is a factoriza- 
tion of Sq 32 on the intersectioa of the kernels of Sq 2~, 0 < k < 4: 

Sq 32 = Sql~. + ,Y-.aifli 

such that 
(1) deg fl~ is even, 
(2) # = (Sq 3° + Sq26Sq4)¢o,o + (Sq 2g + Sq26Sq 2 + Sq24S, t4)¢~,,l 

+ (Sq22Sq 2 + S(t2°Sq 4 + SqlSSq6)¢2,2 + S(f2¢2,4 
--1-- (Sq 16 + Sql4aq 2 .-]- Sq12Sq4)(~3, 3 -st.. SqlSaq4~t,3 

+ Sq14~1,4 --'1- ¢4,4, 
where ¢~u is the secondary operation based on a factorization of Sq2'Sq 2~. 

We now define Am to be the fiber of 

4 
go : A0 = K(Z2, 58)-"K0 -- H K(Z2, 58 + 2 k) 

k-0 

g iven  b y  

g d ) ( , 5 8 + e )  ffi Sq2~,58, 0 <-_ k <ffi 4. 

In At, we may apply our factorization of Sq 32 to the image of 15s. Let z, {b,. } be 
cohomology classes in H*(AI) that represent the operations ~ and {fl,}, 
respectively. We define A2 to be the fiber of the map 
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given by 

and 

gl : A t --" K(Z2, 1 1 3) X K(Z2, 1 1 7) X l-I K(Z2, 5 8 + deg/~) 
i 

g*(z113) = Sq%,  

g?O~7) = Sq26Sq2z, 

g~(lss+d~#,)) -~ bi. 

All of the relations used thus far hold stably, so we choose all our spaces and 
maps to be at least 4-fold loop spaces and maps. If B k denotes the k-fold 
unlooping funetor, we have in H*(B2A2) that 

[(B2(pI P2)*0~o)]2 = Sq60((B2p~ Pg*O~o)) 

= Sq2SSq32((B2pl P2)*060)) 

= Sq2S[Sql(B2p*z) + Y-,aiB2p~(bi)] 

-_ ( Sq4Sql Sq24 + SqI Sq2~ Sq2)(B2 p l z  ) 

(by the Adem relation Sq4Sq 2s = Sq2SSq I + Sq27Sq 2) 

~ 0 .  

It follows that there is a suspension dement uEHII7(A2) such that 

c(v) = (p~ P2)*(~ss) ® (Pl P2)*05s) 

and 

i f (v )  = Sq4Sq~lm + S¢1z116 + S¢2'Y, aiZST+~#,. 

§2. Constraetion of liftings 

We now turn to the definition of the mapsfo, f~, and f2 of diagram (1.3). Their 
construction is somewhat involved; in fact, we need a factorization: 
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(2.1) 

A2 

Al 

~'~X f~ Gl ~' D, a, ' , H I  ' E l  ' : / l  

Go vo, H o ~  Eo "°,A0 

Fo 

In (2.1) the composition p,/~! -- P~. Here p~ is the fiber of the map g~ given by 
the same formula as go without the Sqlls8 term, and/~ is the fiber of the map 
go:At-" K(Z2, 59) given by g~'(lsg) -~ SqlP*(IsO " 

We shall see that (a0fl0Y0 f0)*0ss) = usa, so this composition will serve as our 
choice of f0. We will choose f - - 0 1  ~. The vertical maps will be principal 
fibrations whose fibers are generalized Eilenberg-MacLane spaces. 

The next theorem specifies the additional properties required in this 
diagram to produce the hypotheses of Theorem 1.1. 

THEOREM 2.1. The diagram (2.1), with the exception of  the map f2, can be 
constructed so that 

(a) Go is a double loop space, Ho and Eo are quadruple loop spaces; 
(b) ao is a c-map and a-map, flo a quadruple loop map, ~'o and fo loop maps 

and c-maps; 
(c)/~l is a double loop space, Ill is the loop space of  a c-space, and Gl is a loop 

space and c-space; the vertical maps respect these structures; 
(d) &~ is an H-map, ~l is a loop map, Yl is a loop map, and~ is a loop map 

and c-map; 

(e) Ol is an H-map. 
Also 

(f) H44(/~1) contains no element whose coproduct is 

Sqge14~SqSe14, el4 ÷ 0~Hl4(El): 

(g) the fiber of  et has its fundamental classes in degrees < 72. 
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Theorem 2.1 will be proved in Section 3. We now derive the hypotheses of 
Theorem 1.1 from Theorem 2.1. 

THEOREM 2.2. The obstructions c( f )  and a ( f )  factor through classes in 

c(Oi f )  + elements in H57(~X A ~X) (i) 

= c(&,/~Yl f )  (ii) 

-- c(&~/~yO o ( f  A f )  (iii) 

= Y, ^ Y,) + ^ 

Here (i) holds since 01 is a lifting of 01 = &t/1171, (ii) is true since H°dd(~X) = O, 
and (iii) holds since f is a c-map, by Theorem 2. l(d). 

By [6, Proposition A5] and the fact that BH~ is a c-space by Theorem 2. l(c), 
(1 + T*)c(al/~0 = (f2g0)[q], for some ~/EH56(H~ A H0. Since H56(~X) A fiX) 
C B ®B, fl2g 0 consists of Steenrod operations, and B (~B is closed under 
these operations, we obtain 

c(al/~)(~,l f A ~', f ) ~ B  ®B + diagonal terms. 

These terms must lie in 

H 29 ~ H 29 -k- H 3° ~ H 3° + H a2 ~ H 32 d- H 36 ~ H 36, 

which is contained in B ~ B ,  by (1.2). 
Application of [5] gives c(?O E PH*(GO ~ PH*(G1). Further, c(Ti) factors 

through the fiber of f r l ,  so it lies in degrees _-< 70, by Theorem 2.1(g). Hence 
f(&lfll)C0'l)(fAf) consists of Steenrod operations applied to elements 
in E~.),j(pHi(fX)C~.)PHJ(fX)), i,j < 56. So 

A similar calculation, using Theorem 2.1 (f), yields a ( f )  E B ® B ® B. (See 
Theorems 5.1-5.5 of [6] for more detailed versions of these arguments.) [] 

THEOREM 2.3. a(glfl)~--* andc (g l f )~* .  

PROOF. We have 

B ~ B and B ® B ~ B, respectively. 

PROOF. We compute: 

c ( f O  = 
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And 

a(g~f) -- [2g, a ( f )  and c(g , f )  = [2gtc(f). 

~'~gl " ~ 1  ~K(Z2, 112, 116) X K(Z2, odd), 

and since a ( f )  and c( f )  factor through flZK 0 we see that a(gzf)  and c(gl f )  
are the images under Steenrod operations of elements of degrees 58, 60, 64, 
and 72 in B ®B ®B and B ®B, respectively. One calculates, using formula 
(1.2), that all these images are zero. [] 

Since gl f~ is an H-map, it is represented by primitives in H*(DX), and the 
degrees of these are > 58, g~f ~ . ,  so a lifting f2 exists. 

THEOREM 2.4. f2 can be chosen to be an H-map. 

PROOF. We use the method of [8]. D~ factors through the fiber of p2 which 
is K(Z2, 112, 116) X K(Z2, odd). Hence it factors through a cohomology class 
/)2 in degrees 112 and 116. By Theorem 2.3 and [8], 

( A ~  1 - 1 ~ 2 [ ) [ / ) 2 ]  --~ [a3(g~f)] = 0, and (1 - T*)[/52] = [c(glf~)] = 0. 

Hence/)2 determines a class in P Ext~.~two (Z2, Z2), n -- 112, and 116. But by 
(1.2), these groups are zero. Therefore we may alter f2 so that it is an H-map. [] 

Thus the hypotheses of Theorem 1.1 follow from Theorem 2.1. 

§3. Proof of Theorem 2.1 

Step 1. Construction of 

fiX 4 Go"~°' Ho #°' Eo 

Fo 

a° ~ Ao 

Begin by defining B4q_I:B4Fo~K(Z, 18) to be the fiber of the map 
B4w_2 :K(Z, 18)~K(Z2; 20, 22) such that 

(3.1) (B4w_2)*120 = Sq2zis and (B4w_2)*t22--- 3q4118. 

Now let B4Eo and B4Ho be the fibers of maps B4w_ ~ : B 4 F o  ~ K(Z2, 63) and 
B4h-l : B4Fo ~ K(Z2, 49) defined by, respectively, 
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(3.2) 

and 

(3.3) 

(B4w_ 1)*( /63)  ffi  Sq3°SqlS~l 8 
---- Sq14Sqe3SqSy18 

(B4h-1)*(t49) f f i  Sq23S~Syl  8, 

where Yn = B4w*2On). We have induced a diagram 

(3.4) 

B4Ho ~#o , B4Eo 

B4r° [ I B4% 
B4Fo - , a4Fo 

Next, define B2so:B2Go--*B2F 0 to be the fiber of the map B2k_ I: B2Fo-'* 
K(Z2, 40) given by 

(3.5) ( B2k- 1)*(/40) ---- Sql6SqgYl6 + YI6 SqSYI6, 

where yte =- tr*(tr*y~s). In H*(B2Go), we have the identity 

(B2$0)*(B2h_ 1)* ( | 47 )  ffi (B2$o)*(SqTSq|6SqSyl6) 

(3.6) -~ Sq7(B2So)*(Sq 16Sq8~ 16) 

---- Sq7( yl6SqSyle). 

Looping once, we get 

(3.7) 

BGo 

BFo 

Bk-I 1 

K(Z2, 39) 

~o 

S¢1 

, BHo 

Br o 

, BFo 

l Bh_ t 

' K(Z2, 46) 

that is commutative and such that D ~  factors through the map 

1 ~  : BGo ̂  BGo-" K(Z2, 45) 

given by 
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(3.8) /)~(/4s) = (Bso) *Y,s ~ [(BSo)*Yls] 2, 

by application of a theorem of [9] to (3.6). Consequently, 3'o : Go--* Ho is a loop 
map such that c(3'o) = 0. 

We next turn to the map ~. Let P2 X denote the projective plane of X. Since 
x~5 is primitive, it has a representative P2xt5 EH~6(P2X). One checks that 

Sqi6Sq8(p2Xl5 ) = (SqSP2xls)(P2Xls). 

Also ,  

Sq2(p2x 5) = 0 = Sq4(e2x 5). 

It then follows from (3. I) and (3.5) that the map P2X ~ K ( Z ,  16) representing 

the class P2x,5 lifts to a map 

P2Sfo : P 2 X ~  B2Go, 

whence arrives an H-map 

Bfo : X ~ BGo. 

Thus fo : f l X ~  Go is a loop map and c(fo) -- 0. 
To complete the bottom row of diagram (2.1) we need the map a~ By (3.2), 

(Bw_ ,)*(Z6o) = Sq3°Sq'Sy,  

= y 45. 

Hence Eo "~ Fo X K(Z2, 58), and, by the results of [2], this equivalence is as 
a-spaces. Thus we define the a-map ao : Eo--'Ao -- K(Z2, 58) to be projection 
on the second factor. To see that ao is also a c-map, let B4~o: B4/~o--- K(Z, 18) 
be the fiber of the map B4#_t :K(Z, 18)~K(Z2,63) given by the same 
formula as B4w_ ~. As above, 

(3.9) /~o " K(Z, 14) × K(Z2, 58). 

Then ao factors through the projection ~o:/~0~K(Z~ 58). Since c(ao)~ 
H57(Eo ^ Eo) and the induced map E0 ̂  Eo ~/~o ^/~o is zero on cohomology in 
degree 57, C(ao) = O. 

Step 2. Construction of 
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f ~ x  ' Gt r, ' /-/1 ~' ' El a, ' AI 

Go ro Ho #° Eo ~° ' ) ' Ao 

We now proceed to the second row of diagram (2.1). By (3.3), 

(Bw_ 1)*(/46) = Sq23(SqSyts) 

= (SaSyls)  ~, 

so Ho "~ F0 X K(Z2, 44), and z~(1 @ 144) = SqSy14@SqSy,4. 
In the next proposition, we collect some information about the images 

under ~¢(2) of 1 ®lssEH*(E0) -~H*(Fo X K(Z2, 58)) and 1 @t~EH*(Ho)~-- 
H*(Fo X K(Z2, 44)). 

PROPOSITION 3.1. (1) There exist elements B2VkEH*(B2Eo) such that 
(tT*)2(B2Vk) -~- 1 ~Sq2~158, 1 < k < 4. 

(2) There are elements B3aE, B3asEH*(B3Ho) and BEa4~H*(B2HQ) 
that suspend to 1 ~ Sq2Sq14144, 1 ~ SqaSq14144, and 1 ~ Sq4Sq14t44, respectively. 
Furthermore, A(BEa4) = Ky26 ~y26, K ~ Z2. 

(3) There are elements B3al6,~2, B3a14,12, B3a12,1, and B 3a lfln H*(B 3Ho) that 
suspend to 1 ~ S  Ol6Sal21tt tt 44 "~- "Y1412 (Sm81~/.)'14/~2~ 1, 1 ~Sq14Sq12144, 1 @Sq12Sqlt44, 
and 1 ~ Sql3t~, respectively. 

(4) (Bflo)*(Bv4) = SqlT(Ba,3) + Sq'6SqlBa,2,1, + Sq4(Bal4,,2) + Sq2(BOtl6,12). 

These facts arise through appropriate use of  the spectral sequence 

(3.10) Torn,oo (Z2, Z2) =* H*(t)  Y); 

cf. Propositions 3.1-3.3 of  [6], and the Adem relation 

Sql6Sq  14 = Sq17Sq13 + Sq16SCSq~2Sq I + Sq4Sq~4Sq12 + Sq2Sq16Sq12. 

We choose this particular factorization to ensure part (g) of  Theorem 2.1. 
Details of the proof  are left to the reader. 

We can now define/-/1, El, and .41. Let 

M0 = K(Z2; 60, 62, 66, 74), 

and define B2wo : B2Eo ~ B2Mo and B4go : B4Ao ~ B4Mo by 
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(B2wo)*(t6o+ ) = B % ,  

(B4go)*(z62+ ,) = Sq2%2, 

l_<k-_<_4, 

l ~ k < 4 .  

Let B2qt :B2E~-,B2Eo and B4pl : B4A1-,B4Ao be the fibers of B2wo and B4go, 
respectively. 

Let B2Lo -- K(Z2; 59, 59, 62, 64, 68, 72, 74) and define B2ho : BEHo--* B2Lo 
by the table 

(3.11) 

X 

159 

iS9 

Z62 

/64 

/68 

172 

/74 

(B2ho)*(x) 

B2t~12,1 

B2t~13 

B2a2 

W2¢t4 

Bea8 

B2ol14,12 

B2a16,12 

Let B2f l  : B2I~1 --. B2Ho be the fiber of B2ho . 

To define G~, we shall need to deal with Sq ~. In H6°(BEo) there is an element 
Bvo that suspends to 1 ®Sqlls8 in H*(Eo) ~ H*(Fo X K(Z2, 58)). It is not hard 
to check that 

A(Bvo) = [(Bqo)*( yls)] 2 ~ [(Bqo)*( yls)] 2. 

By (2.8), A((Byo)*(Bflo)*[Bvo]) -- 0. We define 

by 

and 

Bko : BGo--* BLo X K(Z2, 60) 

Bko = Bho BYo on BLo, 

(Bko)*[t6o] = (BYo)*(Bflo)*[Bvo]. 

Let Bs~ : BG~ --, BGo be the fiber of Bko. Since the image of (Bfo)*(Bko)* consists 
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of primitive elements of H*(X) in degrees greater than 30, it must be zero. 
Hence Bf0 lifts to B~ : X--,  BG,. Since Bfo is an H-map, Dsz factors through the 
fiber of Bs~. Checking degrees, at least one factor of each term of DB/, is 
decomposable in H*(X). Since 

c(~) = (a* ® a*)(Dnz), 

c(~)  - -  O. We now have: 

Am 

1 
(3.12) Gm r, ' /"II /~, , El &l '-~I to ' K(Z2, 59) 

ro , H0 #o , Eo "° ' Ao 

By construction, A1 is a fourth loop space,/~1 a double loop space,//m is the 
loop space of a c-space, G, is the loop space of an H-space, and the vertical 
maps preserve these structures. The maps ~1 and 7m are loop maps, and it is 
possible to choose ~im to be an H-map using an argument similar to that of 
Theorem 2.4. Finally, application of the spectral sequence (3.10) to the space 
E0 yields part (f) of Theorem 2.1. 

It is immediate from the construction that there exists a lifting 01 :Gm --*Am. 
It remains to show that 01 is an H-map. To do this, we begin by obtaining a 
factorization of the map Bk0. Let Be£0 : B2G0 ~ K(Z, 16) be constructed so that, 
if B2914 ---- B2,.,¢~It(I16), we have 

(i) SqlrSqS(B2g14) ffi (B2gm4)SqS(B2g14) ÷ O, 
(ii) SqlSSqT(Bg14~SqSBg14) = (Bg14)2®(Bg14) 2 ~ O, and 

(iii) en29(Go) C S~(H29(K(Z, 14))). 
We may also define B4fo:B41:1o---,K(Z, 18) to be the fiber of the map 
B4~-l : K(Z, 18)~ K(Z2, 49) given by the formula 

B4h*-- m044) = Sq23SqSllS. 

There results the commutative diagram 

(3.13) 

BGo aro ' BHo B#o ' BEo 

l 1 l 
, BI:Io , s &  
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By (3.9), there exists B#oEH6°(BF.o) such that e*B#o = 1 ®Sqqss. We could 
have chosen BvoEH6°(BEo) to be the image of B00, and we assume this choice 
was made. 

Application of the Adem relations to conditions (i) and (ii) gives that 
(B#oB~,o)*(B#o) is primitive in H*(BGo). Now let B0~ be the fiber of 
(BI~oBf, o)*(B#o):BGo--)K(Z2, 60). Then B G  1 is an H-space and there is a 
commutative diagram 

(3.14) 

Gl' ~' ' Go *° , Fo 

I' 1 'o I'-, 
G~ ~' ' Go ~° , K ( Z ,  14) 

The H-deviation Do1 factors through a map D~:Gm ̂  G~--)K(Z2, 58). By 
(3.12), Dt can be defined using a nullhomotopy of the composition 
Sq I ° o~o °//0 ° ~'0 ° s~. But by (3.9), (3.13), and (3.14), this nullhomotopy could be 
chosen to be J~ composed with a null-homotopy of Sq ~ o &o ° ~o ° Yo ° sm. Thus the 
class ofDi EH*(G~ ^ GI) is in (Jl ^ J~)*H*(~l ̂  Gl). By use of the methods of 
[8] 01 can be arranged so that 

D1 E (J* ~ J*)(pH29(~I) ® pH29((~I)), 

so by condition (iii), D~ = 0. 
Thus Theorem 2.1 is proved. 
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